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Abstract

ABSTRACT

Background and objective:

In recent years, plastic particles have become globally recognized as one of the
most threatening emerging pollutants. Nanoplastics (NPs), with a diameter smaller
than 100 nm, are particularly concerning compared to microplastics (MPs, with a
diameter less than 5 mm) due to their smaller size and larger surface area-to-volume
ratio, which enhance their biological toxicity and their ability to adsorb other
environmental pollutants. Research on the toxicity of combined exposure to
nanoplastics and other pollutants has predominantly focused on aquatic organisms,
with relatively fewer studies conducted on mammals, especially regarding their
reproductive systems. Triclosan (TCS) is a common pharmaceutical and personal care
product (PPCP) widely used in people's daily lives. Previous studies have indicated
that polystyrene nanoplastics (PS-NPs) can stably adsorb triclosan, and separate
exposure to PS-NPs and TCS may result in ovarian damage in female mice,
disrupting estrogen secretion and causing reproductive toxicity. However, the effects
of combined exposure to nanoplastics and triclosan on ovarian toxicity and its
underlying mechanisms remain unclear. This study employed adult female Kunming
mice and human ovarian granulosa cells (KGN) as research subjects to systematically
investigate the ovarian toxicity induced by combined exposure to PS-NPs and TCS
from both histological and molecular biology perspectives. The aim is to elucidate the
mechanisms underlying ovarian toxicity and provide scientific evidence for the
potential harm of combined exposure to PS-NPs and TCS on the human reproductive
system.

Experimental methods:

1. The experiment used 8-week-old healthy female Kunming mice, which were
randomLy divided into four groups: control group, NPs alone exposure group, TCS
alone exposure group, and NPs and TCS combined exposure group. Each mouse was

administered corn oil, 1 mg PS-NPs, 50 mg/kg TCS, or 1 mg PS-NPs + 50 mg/kg
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TCS daily by gavage.

2. Compared to the control group and the single exposure groups, the combined
exposure group of NPs and TCS exhibited a significantly prolonged estrous cycle (P
< 0.05), a significant decrease in the number of follicles in ovarian tissue (P < 0.05),
and a significant reduction in serum levels of hormones FSH, E2, and P (P < 0.05).

3. CCK-8 assay results showed that, compared to the control group and the
single exposure groups, combined exposure to NPs and TCS significantly reduced the
viability of KGN cells (P < 0.05). Oxidative stress detection kits indicated that the
levels of ROS and MDA activity in the combined exposure group were significantly
higher (P < 0.05), while SOD and CAT enzyme activities were significantly lower (P
< 0.05) compared to the control and single exposure groups.

4. TMRE probe analysis showed that exposure to NPs and TCS alone caused a
decrease in mitochondrial membrane potential in KGN cells. CYTO-ID autophagy
detection indicated that exposure to NPs and TCS increased autophagic flux and the
formation of autophagosomes in KGN cells.

5. TUNEL staining indicated that exposure to NPs and TCS increased the
number of apoptotic cells in mouse ovaries. Annexin V & PI double staining showed
that the apoptosis rate of KGN cells induced by combined exposure to NPs and TCS
was significantly higher than that of the control group and the single exposure groups
(P <0.05).

6. Western blot results indicated that, compared to the control group and the
single exposure groups, both the ovaries of mice after 30 days of gavage and human
KGN cells after 24 hours of treatment showed a significant increase in the ratio of
autophagy-related proteins LC3B-II/LC3B-I and ATG5 protein expression following
combined exposure to NPs and TCS (P < 0.05). In contrast, P62 protein expression
was significantly decreased (P < 0.05). The ratio of the apoptosis-related proteins
BCL-2/BAX was significantly lower, while Cleaved CASPASE-3 levels were
significantly higher in the combined exposure group compared to the control and
single exposure groups (P < 0.05).

7. After 24 hours of exposure to NPs and TCS, KGN cells showed
co-activation of the KEAP1-NRF2-HO-1 antioxidant stress pathway. Additionally, the
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expression of the antioxidant protein SESTRIN2 was significantly decreased in the
combined exposure group (P < 0.05).
Research results:

1. After 30 days of gavage, both the control group and the NPs group showed
an increase in mouse body weight. However, the body weight of mice in the TCS
single exposure group and the combined exposure group of NPs and TCS decreased.
Additionally, the ovarian index of mice with combined exposure was significantly
lower than that of the control group and the single exposure groups.

2. Compared to the control group and the single exposure groups, the combined
exposure group of NPs and TCS exhibited a significantly prolonged estrous cycle.
The number of follicles in ovarian tissue significantly decreased, and the levels of
serum hormones FSH, E,, and P in mice significantly decreased.

3. The CCK-8 assay revealed that compared to the control group and the single
exposure groups, the combined exposure of NPs and TCS significantly reduced the
viability of KGN cells. The oxidative stress assay kit demonstrated that compared to
the control group and the single exposure groups, the combined exposure of NPs and
TCS resulted in a significant increase in ROS levels and MDA activity, while the
activities of SOD enzyme and CAT enzyme were significantly decreased.

4. TMRE (tetramethylrhodamine, ethyl ester) staining revealed that both NPs
and TCS single exposures caused a decrease in mitochondrial membrane potential in
KGN cells. CYTO-ID autophagy detection demonstrated that exposure to NPs and
TCS could induce an increase in autophagic flux and an increase in the formation of
autophagosomes in KGN cells.

5. The TUNEL staining assay kit indicated that exposure to NPs and TCS
induced an increase in apoptotic cells in mouse ovarian tissues. The Annexin V & PI
dual staining assay kit showed that the combined exposure to NPs and TCS
significantly increased the apoptosis rate of KGN cells compared to the control group
and the single exposure groups.

6. Western blot results showed that in both mouse ovaries after 30 days of
gavage and human KGN cells treated for 24 hours, following combined exposure to

NPs and TCS, there was a significant increase in the expression of autophagy-related
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proteins LC3B-II/LC3B-I ratio and ATGS, while the expression of P62 protein was
significantly decreased compared to the control group and the single exposure groups.
Additionally, the BCL-2/BAX ratio, indicative of apoptosis, was significantly lower,
and Cleaved CASPASE-3 expression was significantly higher in the combined
exposure group of NPs and TCS compared to the control and single exposure groups.

7. After 24 hours of exposure to NPs and TCS, a synergistic activation of the
NRF2-KEAPI-HO-1 antioxidant stress pathway was observed in KGN cells.
Moreover, the expression of the antioxidant protein SESTRIN2 was significantly
reduced in the combined exposure group.
Research conclusions:

1. Combined exposure to NPs and TCS significantly induced toxic damage in
the ovaries of female mice and KGN cells.

2. The combined exposure to NPs and TCS synergistically activated the
antioxidant stress KEAP1-NRF2-HO-1 signaling pathway, and the downregulation of
SESTRIN2 expression affected the balance of oxidative stress and antioxidant

defense.

Keywords: Nanoplastics; Triclosan; Oxidative stress; Synergistic toxicity; Granulosa
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(DLS) 735450 NPs HMII & =S A5 1 zeta AL, JFXT NPs ORI/ A7

BEAT 7 -

2.3 PS-NPs 1 TCS RE /) REBIRET

2.3.1 L E R AR



%25 MBS

BAE T /N R B T 2, Hd/NR B R PS-NPs (25nm) (155 &
SR % AT T4 RO, /N bR R e = AR R 8 2 25 A S SR IR B 790
R T RS HEE R/, B R e, AR 2542°C, BSE 55+5%, 12/12
h GBI IA TRl FR . Gad— A B B fE oK 28 R i BB/ BRBE AL 20 B 4
4, BHTH, DHINIELA, PS-NPs 4, TCS #%FE4L, PS-NPs fll TCS
PA R, B, TCS T DMSO W, BRIV T Rk, 7R &M
H DMSO BB 0.1%, £ S5 AR AV TR B ATAERR IR BIRE 24 h, DA
FEAVR A NPs il TCS ¥ - £ 4 NPs S F2 24 /N BB R B R #EE 1 mg PS-NPs,
TCS B#FHA/NRAF R RHEE 50 mg/kg, NPs M TCS BEA 2 T 4/ BN A& R 43
RU¥EHE 1 mg PS-NPs+50 mg/kg TCS, XJHEZH 45 T [FAARIR £ oK. &0 IkiE S
30 RJG, P /DNRBRREE, HEATAEACRSE . R4/ SRFEAT AR AE I 25 /0 J5 R Y
M3E, YPEFRE 5 HF-80 CCLRAT LAH o5 4Lt .

232 /MEEEMEIFERINE

I R 77 12 /AR 4L/ B AR B IFE S /N BRBIE T H 5 IS5l 15 4
W, BERN 3 REHT /N RBAE G B KR ARSI A/ BB E 2
0.5-lcm Ab, BN B SIRRAERBT, MR TE R0, LR
G MG, FIWTARHELD T -

=i TSR FrE Ch)

ENIEHI  (proestrus) REAZ RN, SEAdi 12

Z1EH Cestrus) KELTHALEIR AL F Al GERLTE  9~15
MR R, DEHZ BN

E G (metestrus) e BRI, AAZ DR E g 14~18

A (diestrus) ReEAgi. 8 R gnie &b ek 60~70

2.3.3 MERBPEBRAAE H

C1) B 5P 5240 20K 58 Ja N 8 FH B9 40 2 ] 52 v A [ 52 24 h;
(2) FATEBAE KM 5 min, HKIRE 70%- 80%-+ 95% 1. 95% II. 100% 1.



%25 MBS

100% I & B BEAT R FE MK 1 hs

(3) BB WAL IR 0.5 h;

(4) FH A EBIEORFFE 60 CCIEIR /K BAIEAT MR, WA 5 BB B 45
H;

(5) EYI AT 4~6 ym Y1), FF7E 37°ClR/KH AT o

2.3.4 YA48 HE 36

(1) WA HZARE I TR 58 CCHEA AT HE Jr s

(2) fE HRAp L, KIKAE 100% 1. 100% I, 95% 1. 95% II. 80%-
70%- 50% L EHEE 5 min AT KAk

(3) HHATIRZYROMMIZ 2 min, BEATHKPPPER T 30 min;

(4) HFL AN 2 min, ZKPEERD;

(5) HATHRE WA IFAE = R R AT & W, f e BUE & PR 3 R AT

2.3.5 £ FEHFEKERE

(1) hnFe: FEREFRIR b2 A SIAF AR ft AL ARdESLAN 2 B 4L, AL
FEah S0pL, FFRSLE LR SRS

() W\WE: HEHRESR)E T 37°C IR E 30 min;

(3) Bek: DOEEERE, FEBE, BT, SAMHRER, H#E8
30 MEFEE, WES 5 IR, ERUKLR EmT

(4) fnlg: BALIMAEEFREG 50 L, 23 SLERIR

(5 BE: BEH2;

(6) Pe¥k: ¥AER 3;

(7) . BN EOF AS0uL, FiMAEEGIL B50 L, BREG
2], 37C EEHE A 10 min;

(8) %1k FEFLINZ I 50 uL, &Ik

(9) M. LRILE 450 nm PEKAKF I E S FLBOLE (OD fE) .

2.3.6 BP&ZHZR TUNEL 36



%25 MBS

(D BamE U] 2 R B, IR SRR AT B i 7K s

(2) PBS /5 01 20 pg/mL /N4 DNase [1) 2K (1 E§ K, 25°CH#¥ & 30 min;

(3) PBS i&E¥: 3 i, SEAMFEANIIA 10 pL TAT EEF1 90 L 5OEhrici,
i 37°CHEE 1 hy

(4) PBS Wik 3 Ik, #HATANMEAZY e, W0 DAPL 3, #A=ERE
10 min;

(5) HBL e KB Rl F e 28 S T g,
2.3.7 E ST RN DPE LA N B/ ME

(1) B /N RO SR SN 2.5% 8 1% T [ 3E 2 h;

(2) PBS &V o H 2%k [ € 2 h;

(3) FH 50%-. 70%-+ 80%- 90%- 100% ZBE3EAT 465 it /K % 15 min;
(4) FIPERE e 2 %, HK 15 min;

(5) {5 FH TR B AR A2 IR JEA T8 FE V2025 IR

(6) HIMEMNEHATREARMIE, AEEEIMmT f;

(7) 3%EEMRAN-M T Gt f5, 7RIS R T AT ML

2.4 PS-NPs 1 TCS RE KGN HAERIRE T

2.4.1 KGN B RIEHA

(1) SE44I iR ac & . 7630 DMEM/F-12 J5 383 i im 10% a2k
Mg (FBS) MIH &&= -85 2 0PN, 1 49°CIRfF.

(2) KGN 48 75« AT EUHE Fp B R A7 45 TE R 37°CIE IR /K 4H
3 min JERHAAFR AL G TE 1000 rpm 250> 4 min. U HRAFE 5 AR 55 L2
Wik, HEIRG BT RFTIR S, e AT 20 AR %R

(3) KGN 4UifEA: A K 3] 80% 4 A I #EATARARERAE, TR JE 4
MUk, F PBS IEME—I, MMANIEE 0.25% e & B g, £EME T
MEZ, FrgifAR 5 G N e R R A bk, W BT VR 4 e, ik
£E40MY, 7E 500rpm B0 5 min, B0 JEFE B, ISR IR T bz



%25 MBS

filro

(4) KGN AfifRfr: 15 0.25%RBH L& b O s, Fr BiE, IAE
& R R AR S A, BB RE T, TRNRAF & 2-80°CUKAH HEAT
BhEEREIR, 28 R BIWET .

2.4.2 HREE RN (CCK-8 %) SRl a4A

A A CCK-8 7 &l & 20 s 7). 1 %%, AT 96 FLARH I 100uL
A AREIFI (BEFL 8 x 103 NI o IS G, BAIFHEREFEE, Hoa
ERFEIHR L) PS-NPs (0. 50, 100. 150. 200 £ 250 ug/mL) “IF1 TCS (0. 5.
15, 25, 35 F1 45 pM) PO a5 7 BRI A i 24 he 85, FRATEEFLIIA 10uL
(1) CCK-8 VA, FF Ak SR IR ML 2 ho FRATIE FH BREX G 12 R BRHE TEAR AN AE 450 nm
WM ERCEE . feJa, FATTR PS-NPs 1 TCS WA [FZH A 3HT T BG40 2k
MR FR&SZE6 s AU : XTIEZL (0.03% DMSO) . PS-NPs 41 (150 pg/mL) .
TCS 41 (15 uM, 0.03% DMSO) Hl PS-NPs+TCS 41 (150 pg/mL+15 pM, 0.03%
DMSO) -

2.4.3 LHRASE 1L B A

1. KGN Ziffiy ROS 7K o il

YL EERITE 6 FLAROFIZ IR BRATI SR80/ H 25 M) Ab 22 KGN 418 24 h, A7)
F PBS WEigkdiif 2 #8, SRJ5H 0.1%1) DCFH-DA 7£ 37°C #¢ & 30 min. %
TR, AT M By IR B BRI =k, I H DAPI 4 ffid#% 10 min. #x
Ja, FATVKAEMGEG =k, ARG SLRIE SO B T el (BE S8 I
AN, WOR/IKI K Y 485/525 nm.

2. KGN 4fijfs SOD £l

(1) JRVIN AR ECH] R 2 2 b iBida i 1. 200 pLEH, Bl
B B TARMABCH]: BRI oM B R RO I 1. 10 A9LER], BLECEL .

LT RAE 96 SUIRCPHHT A A RAT, BHNAEE =X HtEEAL:

Xt B FL PO EESI=EIN W 5E FL e = AL
FEEEA (ul) - - 20 20
ZRIHIK (ul) 20 20

10



%25 MBS

SRR AL TR 4L e FL S ER
B TAEM (ul) 20 - 20 -
B FRE (ul) - 20 - 20
/ISR 200 200 200 200

(ul)
VBZE), 37°CH% B 20 min, 450nm AbEFHRN 525

(2) $ZRH P A X THEAEA ) SOD {H .
3. KGN 4ijg MDA il :
(D) BRFF IR, TRAT&UF SmL EP 4532 18 T 1 A8 3T 41 o RE A4

((ER
A it e pagil
10 nmol/mL #57H i (mL) - 0.2 - -
To/K CEE (mL) 0.2 - - -
MRS, (mLD - - 0.2 0.2
WR7— (mL) 0.2 0.2 0.2 0.2
B (BEFELD

w7 = (mL) 3 3 3 3
i = (mL) 1 1 -
50%KBEEEE (mL) - - - 1

(2) HEOERE DRSO, HHE LI E—A ML, RAERE TN
95°C/K B HAH 40 min, HUH FU/KAET, 4000rpm, 5.0 10 min;
(3) B RiER) 96 FLiH, HAHA=AEZHREEZL, 532nm & HBGE;
(4) tRAEUHA AL E MDA #d.
4. KGN 4fi}fd CAT il :
(1) FERPERFA—F A = 37°CTiR, & SmL EP &, W40 i Az i
R ARAE:

Xof HEAE e &
RFFEA (mL) - 0.05
Wi — (mL) 1.0 1.0
SCEPVRE), TREE, 37°CHERf )V 1 min
WA= (mL) 1.0 1.0
WAPY (mL) 0.1 0.1
(SRIEEFN 0.05 -

11



%25 MBS

(2) JREIER] 96 FLIR+, HH=A"EE HREEZ I, 1E 405nm M EH
18
(3) R IH A X5 CAT HE -

2.4.4 LA PR E (3048

WA R T 12 LRI IR S50 2 AL R RS SR 40P 24 h J5 . FRATTA PBS ¥k
B =R, AR5, FATAH 10uM TMRE L8086 5 400 30 min.  FeAl 145 1)
Hoechst 33342 Fric4ififit% . fEH PBS Bk =G, WANEZOC BB TMEL T
S T A (EESE0 , BRI 550/575 4k

2.4.5 Cyto-ID &£ i B W /)N

HAVE CYTO-ID H BER IR & 2.0 PRAG E W A BRI W & .
BH 57 P s B e kel mT DU S e (8 B W T AN AR L IR B AR . Al 6
FUB A 25 WAL T 24 h J, AT Cyto-ID 4452 Y Ykl A Hoechst 33342 i
B 40M 30 min. F 1x Assay Buffer $ii% =R J5, TAILAILER BB T W5
i ([ ZSEO HHBE R

2.4.6 AnnexinV & PI Jx4& 30 Z0 B G 1=

AR 6 FLIREIL 2P ALEE 24h J5 W 37 IR 85 7270, 1 PBS J& V)G,
&6 Annexin V-APC ZL 5 U F1 P1 L 44511 Annexin V Binding Buffer i
I E 40 30 mine < J5/EE I T H DAPI JL 4 i i% k¥ & 15 min, 328
FE3 B JO6 B T MR R (FEZSH0

2.5 Western blot

251 RERRRN

W 1% 8 S2B6 2 AL O SR A1 ZUR0 KGN 41 PBS 1k 2 6, IMASHEA
B 1) 7 (0 3E =) RIPA 2R, 7EVK B 7870 BB 30 min. FH RS MM USCER VA4

12
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F| 2 mL EP & F 347 B0 (12000rpm, 4°C) 15 min. X E{EHEAT BCA AWK
FEMRE , PRAFT-20°CUKFE

2.5.2 MR ERSHERERHE:

1 25 Ab FR A7 20 B PBS 3530k 2 38, F 40 i 1) 7% B 41 i, 5000 rpm
B0 5 min YEELN A

(2) 3% i, B 20 pl 40805 I 200 uL &4 PMSF 40 i 2% 55 (1 32 HL
WA Ao EERIERY 5 min, VK 15 min, 0G0 5 A7) B 10uL,
WHEPRY 5 FP, VK 1 min. JAIENRTS 5 P, 7E 4°C, 12000 g 250> 5 min. 7Rl
WCHL IR A EP B, BRI EEE, L RIBAE-80°CLRAT s

(3) PLHEHFBA NN 50 uL &7 PMSF 41 tZ 5 AR EHORTT A, B 20 ez
Y 30 7, UK EERGE 2 min #R%—%, 30t 30 min. T 4°C, 12000 g £+ 10 min,
WL IS ORAFAE TRV 1) EP B oh, BIOASM B4 iuAZ S, SLEDTRAE-80°CIRAF

2.5.3 EBERENEX

(1) FEARNES: WGP 108 FARYE & BRI —2, A 1x Loading
Buffer Z i 10 min, FFZR=ER, 53 RAF-20°CUKHE;

(2) . Bl E 5%PAGE W46 iK AT 12% PAGE 7 B, %18 Rk
WSZJIIE

5%PAGE W4 IR

A (mL) MZEK  30%HEEENG  Tris-sHCL GRZ4ER 10% 10%
PH6.8, 77 B5/ SDS APS TMED
PHS.8)
6 4.10 1.0 0.75 0.06 0.06 0.006

12%57 B i

15 3.0 6.0 5.7 0.15 0.15 0.006
10%77 B3

15 4.0 5.0 5.7 0.15 0.15 0.006

(3) A 7 HE KR P 30 N BG4 BRI, B T IR ERETI: Marker
FFEREA K 10ul, 80V HLYK 30 min [5G4 A 110V HLIK 2 KK

13
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(4) BGJE: $ERTH PVDF JRAE B R0, TONBIN G R e, %
ZRIVRAER VI, RIRIER K. JEM . JE4R. B, PVDF X, JE48. &
M. 1EM. 100V 15 E KB AF T #4590 min;

(5) HH: H 5%iflE 4P = mAERE A 1 h;

(6) WEPUA: HHLEGEH TBST K BB =, X 5 min,
MG E —Pt 4°CE K - 2 = REW—HiH TBST EREIK HIFHEE =k, &K 5
min, ZHRFH —Pi 1 h.

(7) 5 WE —Pi5H TBST fE#8 K HiFH =k, X 5 min, ¥ PVDF
EIR N REBUROC RS, SLRIE B2 EBRY.

2.6 HURALIES 54

P W SE 3R ds 5ok B 2/ = IR AL e 5 . v 45 KA LA IE + Frifk
P Z T 2. FAT1M# H GraphPad Prism #44 (4 8.0, GraphPad Software,
San Diego, CA, USA) #HATHR 7M. FATKH—J0HZ 5 (ANOVA) J5
K H Tukey )2 5 ECERT S0 « A [R] ) 7 BER 7R P 20 2 TAAFAE i35 22 57 (P < 0.05),
M AH B ) 7 BER TR PR A 2 (A1 25 57

14



Hh | &N

#
ik
i

X

BIFEER

3.1 PS-NPs B fnEt & TCS FHIRMISELE

AHIE TR A4 T BB IR R T RR SRR (PS-NPs) [T (K]
3.1A) o PS-NPs 2EKJE, K/NE 15 49KE| 25 gk 28] (B 3.1B) o sk,
FATIME T NPs £l TCS/NPs ¥R FIFHXT Zeta FAAL{E . TCS/NPs [ Zeta HLAL R
BRI AEHE, R WIEN P 5 7 i W3PS (1310 &

40
30 -20

20+ 407

Intensity (%)
Zeta potential (mV)

10 607 :

0- B e
15 20 25
Size (nm)

K 3.1 A LMKk (PS-NPs) ) H AR
(A) TR OIHGCKBRL AR 7 2488 (SEMD ElER. (B) PS-NPs [FJR~f
I3 (C) B PS-NPs 15 TCS W & J5 1 zeta AL, AN[F 7 EERIRAFAE 235
Z5 (P<0.05) .

3.2 PS-NPs #1 TCS R E Xt/ B EBERZERIT

3.2.1 PS-NPs # TCS R E XM/ RIAEFIPEIE B BRI

kT NPs Al TCS AJ L 512/ B A4 SR G 55 f) — L8738 0k o [ 45 5 I [R) SiE

15
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FI3m ER

K, XFREZHAN NPs 2/ RRAR B3 g, SR80 TCS ZHAT NPs+TCS ZH (/)N B
1A B I TR RE KA BTG (B 321 A) o 7EHE 30 KJa, SxIRAIEL TCS
ZH R NPs+TCS A4 25 R %, 17 NPs 2 A0 I8 20 (4 =6 4 b 22 S 3% 4e it
27, NPs+TCS BE&ZFEAMEL T NPs F R FE 5% T, MELT TCS #
MBBERAREESR (F32.1B) « MSTIRAAAEL, /R YNE K/ NFEGH H g
I T AL, TCS A1 NPs+TCS 2H 12 35 R % . NPs+TCS Bt A 5 #5 41 Fl1 NPs
B i ZH A LU R 2 R B, TR TCS B8 75 4 AH L G P B A8 A (&1 3.2.1 C-D).

>
ov)

40-
-o- Control 50
) 387 -#- NPs a a
= = 407 b b
<, 36 TCS =
- 30_
= v Tdids NPs+TCS §"
34- =1 " b2 VP |
z o SRR z?
= 32- = 104
30 o
T T T 1 > < > >
0 10 20 30 40 & T &
C Time (day) D 5
0.5
04 &
£ a
-
E 0.3 b
g 0.2 b
(=]

0.1+

0.0-

] 3.2.1 NPs Ml TCS % #5750/ B4 AN G 4550310
(A AN[R]Ab 2R 2 i 45 B[] () A K 1) /N BRR B AR Ak (B) B8R 30 K5 /N AR E AR
o (C) #FE 30 KRG, AEAIRA/NRIPERT RN (D) /NP EFREW
GO n=T, AFRFEFRIRNFAERERER (P<0.05) .

16

FEM  hitps://www.cnki.net



3.2.2 PS-NPs 1 TCS & ZE &Nt /\Bhig Bk

FRE /)N B 18 i 7% PR gl e 2R iE N ORI B B (1 3.2.2 Aand B)
AHEL T T BE 2, NPs f1 TCS Bz g2 2 1) & A& TR I B K, MBS RiEd s
REE (K322C, P<0.05) .

A B

Control

gomE

owmz
5
Zz
=~
w

17 AT (proestrus) ZNE I Cestrus)

owmE gromg
] 3
+
,_]
l [o
# 7]

%5 # (metestrus) St Cdiestrus)
Time {Day)
C == Control
B3 NPs
0.8 g = TCS
£ - =1 NPSHTCS
a
E b
<
; 0.4 C
<
202 a day
-9
0.0 I;| ﬁ

Metestrus Diestrus

K] 3.2.2 NPs Al TCS % i 51 42 /)N iR B 1% i 125 L
(A) BES A E KRG, Bar: 200um. (B) MR GBI (P) 30
fE (B, SRS (VD SR (D) ) . (O DNRBIERPS. n=7,
ANEFRRRGELREZER (P<0.05)

3.2.3 PS-NPs 1 TCS R Efnfnittd /) R OPEELE LN

YA KA SR P A E e B AR (2B T Th e, BRVEAE N IR SN S A T fiE
AL, BB METE A R B 7. NPs Al TCS 28k 2 X6/ B 9N i pledi

17
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FI3m ER

155, GXTREZAHLL, NPs 1 TCS Ml Z R SEUNEEE T, HikigL,
SRR ERFNEE (B 323AandB, P<0.05) .

A B

S
o
1

Number of growing follicles
n
T

i LA

TCS

K 3.2.3 NPs Fll TCS £z 51/ 5 5P 82 2145145
(A) /N UM EZHZL HE Y@, Bar: 200pum. B /NRUNBEES . n=7, AFHT
BRINFAEREEZSR (P<0.05)

3.2.4 PS-NPs #1 TCS REZTLiM /B EBEHEKTE

P 5 [F A A A I TR, TEH IR e R AR A AR KR B A
AR BB S EZEREM . XN RIMIE R E (FSH) « MR (E»)
ZAW (P R WACEREI, S50 : NPs Ml TCS HIBCA i 5 &/ f
J# FSH, Ea, PR /K P 1 B 2K T 0 B 4L AN B B 75 41 (€ 3.2.4 A-C, P < 0.05),
1 FSH Al P 32 /KFH NPs Hp0 5% 55 2H R REZH 0 I 35 22 etk

18
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>
oo
@!

w
o
]

N
o
L

-
o
Il

o 54

Serum FSH Level (U/L)

Serum Estradiol Level (pmol/L)
>
1
oL
Serum Progesterone Level (ng/mL)

o
1
o
L

] 3.2.4 NPs fil TCS 2 & 5| E iR 70 Wb =L
(A) /NERIMIBEIRIPIEER (FSH) B2, (B) /ANRIMEME R (B
MEAKTFEL. (O NRIMEZE (P) EMEKTFENK. n=7, RNEATEERRE
EREZES (P<0.05)

3.2.5 PS-NPs 1 TCS R E S HUl4/)\FR 5P &£ 5 1

N THRIT NPs i TCS [ 852 75 5142/ R E MR 2R, BATTIEAT T B IR/
VAT R A FREAI . B RS RN, ST IRZAHLE, NPs 1 TCS Bt &
I e A R IR B A R AR IR /MR, 72 NPs Al TCS HUp 8 g 26 o T 5 />

(K 3.2.5A) . Western blot 45 3R E W ATGS 5 R A M LC3B-I/LC3B-THAE
KA 2 e A P ) 0 25 e TR R R SR R B A, T PR R ARG R A T Y 3
M2z, SXTRRAMLL, NPs PMBETEHATLH B, TCS BIMBEFEMHEE T
f%, NPs il TCS B& 2 F 4+ P62 SRHMFRIA N EH AR (K 3.2.5B-E, P<
0.05) &
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4

Contro

&

Atg5

P62

Le3b-T | " s - -
Lc3b-11

B-Actin | CEE G— — -

1.5

5
o

e
o

Relative P62 expression
o

(=2
°

> © S d
S e
&3
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3 iR

3.2.5 NPs F TCS % i Wi /) b A W & E
(A) EHHEFINEAN GEEFEk: hifk; ok BR/ME; g6
#ik: IRV ) , Bar: 2um. (B) Western blot ¥ 7~ H M #H <& LC3B-1, LC3B-II,
P62, ATGS RAREEM. (C) ATGS HEAFRIEKTFHIEML. (D) P62 &K
HRIEKTFEN. (E) LC3B-I/LC3B-IE A XA LR E . n=7, ANFH
FRRRAAERELER (P<0.05) .

3.2.6 PS-NPs #l TCS REiFSMM /R INE BT

AT TUNEL %% 25065 /) Bl B 5L 52 B 1) AN A0 i 3 TR DLk AT #R 92 9F
R 3= B TS AL BAX,  BCL-2 A1 Cleaved CASPASE-3 ) £ ik 1 I,
TUNEL 4445 5L % 7R NPs il TCS HUpH Bl & % % 71 BH 1 40 i 35 2 T % HEZH.C
3.2.6 A) . Western blot £5 5K 5XHZAHLL, BAX £ NPs & #& 2H G
Ak, fE TCS AT RET S, EMEIREG BREHAT ST NEE. SXA
FHEE, BCL-2 M Cleaved CASPASE-3 7£ FRAHUER BRI TG B 25 04k, (HAEHK & &R
i3 ) B R B AT . SRR EL, BCL-2/BAX HUAEAE NPs B #2 i
B, 1E TCS MBLA Z TN EE N (B 3.2.6 B-F, P<0.05) .

21



&
Ik
i
X

TUNEL

- - s

Hoechst

Merge

&
B
g
<
Control TCS NPs+TCS
£
% 25
g
S 20
2
£15
<
[§]
-} 1.0
T 05
:E 0.0
ez I.EI ; Qs &dj &do
Cleaved3 - - “
freiied IEI
\ E
NS S & 2
S &C >Z‘C} 2
gl%
& e e &s & &@ &Qe

&

3.2.6 NPs Fl TCS 2 5% 5 B/ B U0 S0 T2
(A) JPELZ TUNEL %4ff, Bar: 100um. (B) A SPZENE M T AH 5 5
H&IEKF. (C) BAX HEHKIEKFEETH. (D) Cleaved CASPASE-3 i
HEEKFEESH. (E) BCL-2 HHKRIAKFEES . (F) BCL-2/BAX
teEE 'S n=7, AFETFRRRFAEREZER (P<0.05) .
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FI3m ER

3.3 PS-NPs 1 TCS £ E 3} KGN %2

3.3.1 PS-NPs il TCS IR ZEiFS KGN HAEB MY

BAT ST B EE T PS-NPs 2¢ TCS /) KGN 4i B #H1T T CCKS8 556, B
WEERIH M, PS-NPs F1 TCS #{F4Mk T KGN FIf7FiE % (B 33.1AMB) . #
#& T 150 pg/mL PS-NPs I 15 uM TCS A 1E B E K T A RAEREY
50% (B 33.1C, P<0.05) , FihEAE 40 1) 52 o> A ik (& 3.3.1
D) .

Cell Viability (% of control)
Cell Viability (% of control)

0 50 100 150 200 250 0 5 15 25 35 45
NPs(pg/ml) D TCS(uM)

0.54

Cell Viability (% of control)
o
e

0.0-

KGN 4o fERE W E N2 T (A) PS-NPs Al (B) TCS 24 h & FI4HAEIE R,

(C) KGN 44 7% (150 pg/mL PS-NPs A1 15 uM TCS) J& I 40 A7 75
K, (D) fEARFRALLFE N PS-NPs 5% 24 h J5 1) KGN 40B/£4s, Bar: 50pm. n=3,
AAFRFRIRGFEREZER (P<0.05) .

3.3.2 PS-NPs #l TCS IR E S KGN T LR #

23
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3 iR

N T #R1T PS-NPs Al TCS 75 KGN il 51 ke i b 45497 , FRATFE AL 3 /5 1Y
& 7 ROS #1 MDA HIFR R LA K& SOD 1 CAT [H)iF . SxTRR4IAH L,
J& T PS-NPs 5 TCS $uf, ROS /KFEZFEHIN; 1AL PS-NPs #1 TCS 3t
F/EAT, XM REE (K332AfB, P<0.05 . S5xEAML, &
#& T PS-NPs B TCS H.hist, SOD 1 CAT )% 1t & F B A% . 5 A R R 4LA L,
FLEVE 400 SOD &%= R B2, {H CAT iR %A B &4 (K 3.3.2C M D,
P<0.05) o {4t S 45 i AE ks 4, MDA TE NPs Al TCS J:[FRIfE
MG BN, (R ARG T NPs Al TCS 5 A BE41k (K 332E, P
<0.05) .
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FRATSE P B 4 s e A5 i 5 7 S VA 1 2ok A 8 IR L 7 () 284k o 2 ZKE
PR LA 2 I, ZRRiAARIEEE R fL (MPTP) {REFFFHORES, SR GIHRE
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FHEE, 8 b PR 2H 1) JE P 7 Y22 25 A A1 o
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Relative Fluorensence Intensity(fold of vector)
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3.3.3 PS-NPs 1 TCS [ % 5% 5] 42 KGN 41 ig 28 Rk T e [ hs
(A) LRI AL 2O G, Bar: 50pm A1 (B) %GEEDMT. n=3, AN
FRFRINFAELREZEZESS (P<0.05)
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WATVEAYL T % A B £k LB PS-NPs Al TCS 7% 5 (1) 01k B A2 75
SESTRIN2 1 KEAP1-NRF2-HO-1 &2 AL AHG (B 3.3.4A) o S5XTHRZ1AH
bt, #% NRF2 S E ARG I0, [FN4005 NRF2 9%/ (& 3.3.4 B) , KEAPI
EARIEEERC (K 334C, P<0.05) , HO-1 HARAEZ N (K 3.34
D, P<0.05) , f£ PS-NPs 1 TCS FJ3L[EfEH G, XX A, St
Fo F T AT — N o B RS AR AR b, L [H 22 PS-NPs 1 TCS 5l #2148 105
e, 5XRAML, NPs FEEHAMh SESTRIN2 & HERRBEHIG 0, 1M
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HEARKIE. (B) Nuc M1 Cyt-NRF2, (C) KEAPI, (D) HO-1 1 (E) SESTRIN2
MEAREWEEDT. n=3, ARTFRERRAFAEREER (P<0.05 .

3.3.5 PS-NPs #l TCS HIRE S| KGN 40503 E 5

NPT PS-NPs F1 TCS 5l 4 st 25 5 B a ¢, AT &
7 KGN 4t H () [ W R B iR, IEfE 15 B WAH SS 8E 5 LC3B-1.LC3B-11,
P62 Fl ATGS 3Rk . SR NME 5 RN BRI, 7£5 8% PS-NPs /5L TCS )&,
X IRAANLL, HWEEMEE N (B 3.3.5A) o b, 5105 PS-NPs 1§
TCS #Htt, 5 PS-NPs 1 TCS fy3L[FRIfEH 5, LC3B-I/LC3B-I LL{E AT ATGS &
HFRIEEEW N, 1 P62 FEHREEERD (K 3.3.5B-E, P<0.05) .
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HEL R E BT, (D) LC3B-11/ LC3B-IH A, LM (E) P62 HEHAE L. n=3,
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3.3.6 PS-NPs #l TCS IR EiFS KGN ApAT

N T REAERTR NPs Ml TCS a2tk 7T, FATEAT 7 — 0 Annexin
V-PI et sehy, JHE T SR EE BCL-2 Al BAX 3k, XA
AV 7% PS-NPs B TCS L, 5 PS-NPs Al TCS 3L [FI/E B3 88 0 1 4t
R (E33.6ARMB, P<0.05 , EEWINT Cleaved CASPASE-3 HH
Fik, IFREFEMRILT BCL-2/BAX il (& 3.3.6 C-G, P<0.05) .
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Abstract: Microplastics (MPs) and Nanoplastics (NPs) are recognized as
emerging pollutants, and their impacts on environmental pollution and public health
are receiving increasing attention. In daily life, micro- and nanoplastics can also
enter the human body through ingestion, inhalation, and skin contact. Therefore,
there is widespread concern that besides causing environmental issues, micro- and
nanoplastics may also have adverse effects on human health. As research confirms
the ability of MPs/NPs to penetrate the blood-testis barrier and the detection of
MPs/NPs in the placenta, an increasing number of studies are focusing on

reproductive toxicity. Additionally, due to the coexistence of multiple pollutants in
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the environment, MPs/NPs may interact with other pollutants, especially persistent
endocrine disruptors, thereby enhancing comprehensive toxicity such as reproductive
dysfunction. This review focuses on discussing the effects and mechanisms of
combined exposure to micro- and nanoplastics with other environmental pollutants
on reproductive toxicity. It aims to provide research insights into the impact of
micro- and nanoplastics along with other pollutants on human health.

Keywords: Combined Exposure; Microplastics; Nanoplastics; Reproductive

Toxicity
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